

12 Industry Partners9 Research Partners2 Public Partners

Research strategy

SAMCoT

Centre for Research-based Innovation

Mantra: Full-scale data S Centre for Research Cruises

ODE

Arctic Ocean 2016

SAMCoT

Oden Arctic Technology Research Cruises: 2012, 2013 and 2015

Centre for Research-based

Data Set	Period	Place / Platform	Description
Large Scale Field Sea Ice Fracture Experiment (Part I: Size Effect)	06.03.2016 - 18.03.2016	Svea, Svalbard	In total 17 ice floes, with 15 useful results, were splitted Floe size ranges from 3 m to 10 m (in length wise)
Large Scale Field Sea Ice Fracture Experiment (Part II: Loading Rate Effects)	09.03.2017 – 19.03.2017 & 02.04.2017 – 07.04.2017	Svea, Svalbard	In total 13ice floes, with 17 useful results, were splitted Loading rate ranges from 1.5 mm/s, 0.6 mm/s to 0.015 mm/s
Large Scale Field Ice Ridge Splitting Experiment	19.02.2017 – 26.02.2017 & 02.04.2017 – 07.04.2017	Svea, Svalbard	One ice ridge was made in Feb. 2017 The Ice ridge is splitted after one month of consolidation

Mantra: Full-scale data – Field work at Svea, Spitsbergen

Example of laboratory work at the ice tank HSVA, Germany

Data Set	Period	Place / Platform	Description
Loads on structures- Waves propagating in ice LS-WICE	24.10.2016- 11.11.2016	HSVA- Germany	Three groups of experiments were performed: ice fracture under wave actions, wave attenuation/dispersio n in broken ice covers, and ice- structure interaction under wave

SAMCoT

Centre for Research-based

Overview

SAMCoT

 Centre for Research-based Innovation

sf

-LANDFAST ICE-

OPEN SEA

PACK ICE -

SAMCoT Centre for Research-based Innovation

Si

 $\frac{\partial E(f, \vec{x}, \theta)}{\partial t} + \nabla_x \cdot c_g E(f, \vec{x}, \theta) = (1 - C)S_{in} + S_{ds} + S_{nl} + CS_{ice}$

Soil Stability (e.g. slope stability, bearing capacity, settlement, etc.) must be assured during the lifetime of our coastal structures

Here in addition to the thermal interaction, we also have mechanical interaction(abrasion)

	Dr. Seyed A. G. Amiri	NTNU	Postdoc: Thermo-Hydro-Mechanical (THM) modelling of frozen soils
	Dr. Mohammad Saud Afzal	NTNU	Postdoc: Development of an integrated system model for Arctic coastal erosion (MA)
	Mr. Nadeem Ahmad	NTNU	PhD student: High resolution CFD modelling of Arctic coastal erosion
	Mr. Hongtao Li	NTNU/DTU	PhD student: Modelling the propagation of sea-waves in the presence of sea-ice
(B)	Mr. Dennis Monteban	DTU/ NTNU	PhD student:Measurements and modelling of Arctic coastal environments
Ø	Ms. Julie Malenfant Lepage	NTNU/ Laval	PhD student: Erodibility characteristics of frozen/thawing soils
		NTNU	PhD: Numerical Modelling of Short- and Long-term Erosion of Permafrost Coastal Bluffs
		NTNU	PhD: Modelling Oil Spill and Response in the marginal ice zone

Arctic coastal erosion investigations

Centre for Research-based

Sites investigations/monitoring (Since 2012)

• Evaluated historical erosion rates (aerial photographs/satellite images)

Arctic coastal erosion investigations

Sites investigations/monitoring (Since 2012)

- Evaluated historical erosion rates (aerial photographs/satellite images)
- Instrumentation
- Field survey

Laser scanner

SAMCoT

bluff in August 2013

Arctic coastal erosion investigations

Centre for Research-based

Sites investigations/monitoring (Since 2012)

- Evaluated historical erosion rates (aerial photographs/satellite images)
- Instrumentation
- Field survey

Sampling from differ part of coastal sediments for laboratory research on grain content and mechanical properties

Temperature monitoring

Time-laps photo shooting of thermal abrasion process

Identification of environmental forces and processes responsible for coastal recession on sites

Thermodenudation

Identification of environmental forces and processes responsible for coastal recession on sites

Thermoabrasion

Centre for Research-based

S

Arctic coastal erosion investigations

The Thermodenudation Model

MSc., Agnes Schneider (2017)

Flow Model

- Combination of the Mohr Coulomb soil model and cryogenic suction
 - Coupled thermal hydro analysis
 - Cryogenic suction according to the Clausius-Clapeyron equation

Stability Model

- Mohr-Coulomb soil Model
 - Mechanical part of THM coupling
 - Receives outputs from Flow model via Python program codes

Principle of the Thermodenudation Model

Case Study: Baydara Bay

Location of the study site

Calibration of the Thermodenudation Model to Baydara Bay

Thermodenudation Model Baydara Bay

Comparison between measured and calculated data

	Measured	Calculated
ALT [m]	0.86 – 1.0	0.88
Coastal retreat [m]	1.25	1.301
Volume of eroded soil [m ³]	21.09	20.4

ALT = Active layer thickness

Climate Change in Arctic Regions

Scenario 1: Average scenario, based on B2 emission scenario Scenario 2: Extreme scenario, based on A2 emission scenario Baydara Bay 2013 is the reference situation

	2013	2050		2100	
		Scenario 1	Scenario 2	Scenario 1	Scenario 2
Surface air Temperature increase	0	+1.5	+2	+2.5	+6
Permafrost temperature increase	0	+1	+1	+2	+3

IPCC projected Arctic surface air temperature development (based on the B2 emission scenario)

Results Climate Change Scenarios

	Baydara 2013	Baydara	a 2050	Baydara 2100		
		Scenario 1	Scenario 2	Scenario 1	Scenario 2	
Active layer thickness [m]	0.89	1.24	1.28	1.51	1.90	
Coastal retreat rate [m]	1.30	1.79	1.87	2.4	3.2	
Eroded soil volume [m³]	20.40	24.06	26.29	39.92	37.65	

- Active layer thickness increased by 39 44 % until 2050 and by 71 116 % until 2100 compared to 2013
- Coastal retreat increased by 38 44 % until 2050 and by 85 146 % until 2100 compared to 2013
- > Strong correlation between active layer thickness and coastal retreat rate

Erosion in Arctic: a thermoabrasion model to predict shoreline change after an extreme event

• Student: Md. Akhsanul Islam, CoMEM2016

Research Question

 How to assess stability of coastal bluffs and predict shoreline erosion in the Arctic after an extreme event?

Methodology

- Model is based on the physical processes.
- Holistic model is divided into four interdepending models:
 - \circ storm surge
 - o niche growth
 - $\circ \, \text{bluff erosion}$
 - \circ shoreline erosion
- A proper dynamics of these processes need to be established
- Verification of the model with field data.

Preliminary Results

PhD: Numerical Modelling of Short- and Long-term Erosion of Permafrost Coastal Bluffs

Overview

OPEN SEA

PACK ICE -

-LANDFAST ICE-

Simulator for Arctic Marine Structures (SAMS)

Propeller Waves in wash ice Rubble ice transport in fluid Computational fracture (e.g., ice ridge) Analytical Fracture (e.g., floe ice)

Multibody dynamics e.g., multi vessels/structures, moorings, Dynamic Positioning, and station keeping structures

MSc. David Massey (2018)

Overview

SAMCoT

Centre for Research-based Innovation

sf

-LANDFAST ICE-

OPEN SEA

PACK ICE -

