REEF3D : Open-Source Hydrodynamics

Multi-Scale Wave Propagation Modeling for the Norwegian Coast

Hans Bihs

Associate Professor Marine Civil Engineering NTNU Trondheim

Motivation for Wave Modeling

Hirtshals Harbour: Breakwater

Scheveningen Pier: Local Scour

Venice Flood Gates: Sea Level Rise

North Sea: Coastal Dynamics

Motivation for Wave Modeling

Offshore Wind Energy: Wave Force, Local Scour

Offshore Structures: Wave Force, Green Water

Ocean Wave Energy: Wave Climate, Wave Forces

Offshore Structures: Floating, Mooring, Ice

Motivation for Wave Modeling

Aquacultures: Floating, Mooring, Forces, Health

Coastal Transportation Infrastructure

E39: Floating Tunnels

Waves on different scales

Spectral Wave Model

- Large Scale
- Phase-averaged
- e.g. SWAN

Large Scale Phase Resolved

- Large Scale
- Phase-resolving
- adapted for Norwegian Condition
- REEF3D::SFLOW
- REEF3D::FNPF
- REEF3D::NSEWAVE

Numerical Wave Tank

- Near-field
- Flow resolving
- REEF3D::CFD

REEF3D : Open-Source Hydrodynamics

high					
	Model	Dimensions	Turbulence	Br. Waves	
Resolution	REEF3D : CFD	3D	yes	yes	σ
	REEF3D : NSEWAVE	3D	yes	no	Spee
	REEF3D : FNPF	3D	no	no	
low	REEF3D : SFLOW	2D	yes	no	↓ ↓ high

6

REEF3D::CFD

- Solves:

- Full 3D Navier-Stokes Equations
- Free Surface: Two-Phase Flow Water & Air
- Turbulence

- Focus on:

- Free Surface Flows
- Wave Hydrodynamics
- Wave Structure Interaction
- Floating Structures
- Open Channel Flow
- Sediment Transport

- The Code:

- C++ (modular & extensible)
- Parallel Computing / HPC
- Open-Source
- Developed at the Department of Civil and Environmental Engineering, NTNU Trondheim

Surf Zone Hydrodynamics (Boers Case)

Surf Zone Hydrodynamics (Boers Case)

3D Breaking Waves on Reef

Collaboration with Prof. Seiffert, Florida Atlantic

Experiments design based on CFD input

Reef Case 12

H 0.07m, L 3 m, d=0.530

Reef Case 13

H 0.10, L 4m, d=0.460

Reef Case 13 - Close-Up

Offshore Hydrodynamics / SINTEF Collaboration

REEF3D::CFD Multiphysics Extensions

T = 0.3 s

Multiphysics: 6DOF Algorithm

Element Based Mooring Model

Motion of a 2D Moored-Floating Barge

Heave

0.10 $\Delta x = 0.025m$ $--\Delta x = 0.017m$ -·· $\Delta x = 0.01m$ • Experiment 2D Barge: Waves: 0.05 ρ_{barge} = 500 kg/m³ $-\lambda = 1.936 \text{ m}$ -<u>d</u> [-] 0.00 $H_{\text{barge}} = 0.2 \text{ m}$ - H = 0.04 m — $L_{\text{barge}} = 0.3 \text{ m}$ - T = 1.2 s _ -0.05-0.10^L6 10 11 12 8 9 $\frac{t}{T}$ [-]

Multiphysics: Sediment Transport

1.9

Coastal Structures: Regular waves

Porous media flow: Regular waves

REEF3D::SFLOW

- Solves:

- Shallow-Water Equations (i.e. 2D)
- Non-hydrostatic pressure
- wetting-drying
- parallel computing
- Physics:
 - diffraction
 - refraction
 - reflection
 - shoaling
 - breaking
 - current

- Focus on:

- Phase-Resolved Wave Modeling
- Wave Hydrodynamics
- Open Channel Flow
- Sediment Transport

SFLOW Validation : Beji & Battjes

Beji & Battjes

Mehamn Topography

The continental shelf near Mehamn Harbour

0.000

-20.000

-40.000

-60.000

- 80.000

- - 100.000 Ê

-120.000

-140.000

-160.000

-180.000

Mehamn Continental Shelf Scale - SWAN

Mehamn Large Scale - SFLOW

Input wave: H = 9 m T = 15 sRegular wave

Mehamn Large Scale - SFLOW

0.7 Input wave: 0.6 Hs = 4.5 m0.5 Tp = 15 s ${\textcircled{(t)}_{S}}^{0.4}_{0.3}$ 50 Spectrum: 0.2 JONSWAP 40 0.1 Mitsuyasu 0 30 -45[°] ° 45[°] **90**° -90° \mathbf{v} eta (°) 20 10 10 0 8 90[°] 45[°] $S(f) (m^2/Hz)$ **0**° 0.12 6 -45[°] 0.1 0.08 -90[°] 0.06 0.04 β (°) f (Hz) 4 2 0 L 0 1.5 0.5 1 2 f (Hz)

Mehamn Large Scale - SFLOW

Mehamn Harbour scale - SFLOW

Input wave: H = 3.5 m T = 9.5 sRegular wave

Mehamn Harbour scale - SFLOW

Input wave: H = 3.5 m T = 9.5 s Regular wave

River and Environmental Engineering Flows 3D

Arno, Firenze:

- high hydraulic risk during floods
- several (old) bridges
- weirs
- narrow river corridor
- numerical investigation:
 - CFD: Bridges&Weirs
 - SFLOW: River Hydraulics

REEF3D::SFLOW (preliminary)

[ongoing MSc-thesis at NTNU]

River and Environmental Engineering Flows 3D

Sarpfossen Hydropower Plant

CAD Model: STL

Conclusions

- REEF3D Open-Source Hydrodynamics :

- > Phase-resolved Waves on all Scales
- Coastal / Marine / Hydraulic Engineering
- Multiphysics Extensions
 - Floating
 - Sediment
 - Coastal Structures
 - Vegetation
 - Stratified Flow
 - Debris Flow