

CLOSED CAGES IN WAVES

1

Marin Byggteknikkdagen 19. April 2018 David Kristiansen, SINTEF Ocean

Outline

- Introduction
- Model tests of closed cages in waves
 - Wave induced rigid body motions
 - Sloshing
 - Mooring loads
- Summary
- Ocean Space Centre

Introduction

- Closed cages vs. conventional net-cages
 - Contained water separated from the ambient
 - Controlled water exchange system
 - Large displacement (large volume structure)
 - Internal free surface and sloshing
- Motivation for use of closed cages
 - Control of water quality
 - Protect fish against sea-lice
 - Collect waste
 - Improved growth rates
 - Access to new licences for production

Photo: NRK. (Aquafarm Equipment AS)

Illustration: Aqualine AS.

Introduction

Development licences...

Fish Farming Innovation /Dr. Techn. Olav Olsen

Introduction

Three main types of closed cage structures:

- Rigid type (negligible deformations)
- Elastic type (deformations and bending stiffness matter)
- Flexible bag-type (negligible bending stiffness)

Photo: www.nrk.no

Results from recent research projects at SINTEF Ocean:

- SJØFLO (2016-2018) "Seakeeping behavior and moorings of closed fish farms" (FHF)
- CCW (2017-2020) "Safe Operation of Closed aquaculture Cages in Waves" (RCN, MAROFF-KPN)

Model tests with closed cages in waves

Scaled model tests at SINTEF Ocean, March and Nov./Dec. 2017.

Laboratory: Towing Tank (Extension)

L x B x H = 85 m x 10.5 m x 10 m

Objective:

- Study seakeeping behavior of generic closed cages in waves
- Study effects of internal free surface and sloshing

Models

- Model scale factor 1:27
- Five model configurations
 - Rigid type (wet/dry, increased draft)
 - Elastic type
 - Flexible bag type

K51

Measurements and wave conditions

Wave conditions:

Regular waves:

- 23 periods (λ /D = 0.5 6.5)
- 3 steepnesses

Irregular sea:

- JONSWAP (Hs = 1.5 m, Tp=4.7 s)
- Broad band (pink noise)

Effects of sloshing on rigid body motions

- Tests with and without water inside
- Fixed weights resembles weight of "frozen water"

Dimensions:

- Diameter D=1.5 m
- Draft d = 0.375 m
- d/D = 0.25

Model with fixed weights

Model with contained water

Sloshing modes

SINTEF

Numerical calculations

Numerical model:

- WAMIT Potential flow theory in frequency domain
- Simplified and rigid model geometry
- Low order panel method

Simulations:

- Rigid body motions in regular waves
- With and without internal tank
- Effect of wall reflections in the experiments

Results – heave motion

SINTEF

Results – pitch motion

() SINTEF

Results – surge motion

SINTEF

15

Measured sloshing

- Non-stationary sloshing beating
- Coupling of sloshing modes
- Nonlinear sloshing at natural sloshing peropds

Mean wave drift forces

() SINTEF

Slowly varying wave forces

- Tests with flexible bag model
- Irregular waves JONSWAP
 Hs=1.5 m, Tp=4.7 s, γ=3,81
- Dynamic mooring line forces
 - First order motions and sloshing
 - Slowly varying forces and motions

SINTEF

Wave induced motions of flexible bag structure

Flexible dynamic motions of bag observed

- Flutter-like behavior
- Large bag accelerations at bottom
- Scale effects of structural elastic properties

Summary

- Coupled motions in surge and pitch strongly affected by sloshing
- Particular amplification of surge motion for wave periods corresponding to natural period of 2. sloshing mode
- Heave motion not affected by sloshing
- Slowly varying wave forces can be significant
- Large accelerations of flexible bag structures in waves can cause high tensions

Ocean Space Centre

Laboratories of the new concept

() SINTEF

Ocean basin

50x60x20m

Center pit: 7,5x7,5x10 m

Sea-trial basin

Fjord (field) laboratories

Trondheimsfjorden

- Autonomy and interventions
- Monitoring technology
- Digitalisation

• Fish farming technology

Hitra/Frøya

Monitoring technology

Ålesund

- Full scale maritime testing
- Simulation center
- Monitoring technology

Flume tank

M-lab and K-lab

() SINTEF

Teknologi for et bedre samfunn