

Dynamic analyses of tankers moored at berth

Marin byggteknikkdagen 18.4.2018

Martin Thuve Hovden Department of Marine Tecnology, Multiconsult Tromsø

Department of Marine Tecnology, Tromsø

- 27 marine & coastal engineers
- 3 sub-departments:
 - 1. Marine environment and aquaculture Metocean, CFD analyses, aquaculture services
 - 2. Marine technology Hydrodynamic analyses, sea ice analyses
 - Coastal structure and harbour facilities
 Harbour planning, port and jetty engineeringdesign

Dynamic analyses of tankers moored at berth

- Case study Kårstø jetty no. 3
- Analysis methodology
- Metocean design basis
- Harbour planning

multiconsult.no

Kårstø mooring analyses

5

Guidelines

OCIMF (Oil Companies International Marine Forum) Mooring Equipment Guidelines 3rd Edition

BSI Standards Publication Maritime works -Part 1-2: General - Code of practice for assessment of actions

85 6349-1-2:2016

British Standards Institution BS6349 Maritime Works

Jetty 3 and old jetty front

8

ISARSTERN – 17 080 DWT tanker

		Isarstern
	Summer Dead weight tonnage (DWT)	17 080 t
	Displacement (ballast/loaded)	14 572 t / 25 631 t
	Length over all (LOA)	161.36 m
	Extreme breadth	23.00 m
	Moulded depth	11.70 m
	Summer draft	8.60 m
<u></u>	Draft (ballast/loaded)	5.15 m / 8.60 m
	THE ARE A	

Moored 17 080 DWT tanker

BALLAST

LOADED

10

Hydrodynamic model of Isarstern

- Based on GA from the chemical tanker Isarstern
- Approximated 3D model

Wave reflection on old quay front

multiconsult.no

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4 0.2

•

2 1.8

1.6

1.4

1.2

8.0

0.6

0.4 0.2

ο.

Wave amplification [η/η_0], period: 12 s, heading: 90 deg from x-axis

Wave amplification $[\!\eta/\!\eta_0]$, period: 8 s, heading: 90 deg from x-axis

Wave amplification $[_1\hbar_{10}],$ period: 15.2 s, heading: 90 deg from x-axis

1.6 1.4 1.2 1 0.8 0.6 0.4 0.2

n

1.8

1.8

1.6

1.4

0.8

0.6

0.4

0.2

0

13

Wave loads – effect of reflection – 0° heading

Added mass (frekvensavhengig)

16

Mooring lines

- Mooring line:
 - 60 mm Mixed Polyester and Polypropylene, 71 t MBL, SF: 2.00 (35.5 t SWL)

Fenders

• Fenders

- 2 outer cone cell fenders
- 2 middle cylindrical fenders

OPPRISS KAIFRONT (FRONT ELEVATION JETTY FRONT) 1100

Fenders

• Fenders

- 2 outer cone cell fenders
- 2 middle cylindrical fenders

multiconsult.no

Environment - Wind

Environment – Waves & swell

• Wind waves

Direction	0 º	30 º	60º	90º	120 º	150º	180º	210º	240º	270º	300º	330º
	Return period 100yr											
Hs [m]	0.4	0.4	0.4	1.2	1.5	1.6	1.7	0.9	0.4	0.5	0.6	0.5
Tp [s]	1.7	2.3	2.4	3.2	3.6	3.8	4.3	3.2	1.7	2.0	2.1	1.8

• Swell (RP100)

Hs [m]	NIA .	0.2	0.3	0.3	0.2	ΝΛ
Tp [s]	INA	13	14.1	15.4	16.4	NA

- Direction of swell at site assumed to be 180 deg.

Pitt M Bass of

Environment - Current

Figure 3.3 Current measurement positions and main residual currents at Kårstø.

Environment - combination

NORSOK recommendations

Condition	Wind state	Wind wave state (from wind direction)	Swell	Current
Extreme	RP 100y	RP 100y	RP100 swell, Tp= 8s-17s	RP 10y
Omnidirectional	22.0 m/s	Calculated wind wave	From 0 to 0.3 m	RP 100y

AAAA STATE THE BABA

Simulation matrix

- Hydrodynamic analyses in Wamit
 - Added masses, wave loads and wave drift loads
- Simulation of the response to 3 h storms using SIMO (non-linear time domain simulations)
 - Combined dynamic action from wind, wind waves, swell, current

	Loaded	Ballast
Extreme	5 x 12 cases	5 x 12 cases
omnidirectional wind	7 x 12 cases	7 x 12 cases

multiconsult.no

Eigen periods

Ballast	T [sec]	7.27	7.88	8.17	14.9	15.81	36.36
	SURGE	-0.03	-0.01	-0.01	-0.07	0.24	1
	SWAY	-0.01	-0.02	0.04	0.35	1	-0.1
	HEAVE	0.28	-0.05	-0.08	0.01	0.03	0
	ROLL	1	-1	1	-0.09	-0.1	0
	PITCH	0.29	0.19	0.08	-0.03	0.02	0
	YAW	0.03	0.02	0.01	1	-0.71	0.2
Loaded	T [sec]	9.22	11.62	12.84	20.22	24.65	52.59
	SURGE	-0.09	0.01	0	-0.01	0.41	1
	SWAY	0.2	0.02	-0.02	0.4	1	-0.1
	HEAVE	0.34	0.41	-0.02	-0.01	-0.01	0
	ROLL	0.24	1	1	0.39	0.76	0
	PITCH	1	-0.31	0.01	-0.02	0	0
	YAW	0.17	0.02	-0.01	1	-0.85	0.2

AAAA STAT THE BABA

Extreme environment – Mooring loads

Loads within SWL

29

Extreme environment – Hook loads

Loads within SWL

Extreme environment – Fender compression

 Compressions exceed design compression limits for both ballast and loaded.

Extreme environment – swell & mooring lines

- 15.4 s gives highest response (highest swell height; sway, yaw and roll excitation)
- Up to 40 % increase from the lower periods for stern and bow lines

Extreme environment – swell & fenders

- Both loaded and ballast conditions are sensitive to swell heights
- 15.4 s gives highest response (highest swell height; sway, yaw and roll excitation)

Maximum omni wind vs swell height

- <u>No swell</u> (no waves with long periods)
 - + Max wind wave: $H_s = 1.7 \text{ m}$, $T_p = 4.3 \text{ s}$ (30 m wave length, local max 4-5 m)
 - + Max wind speed: 30 m/s (1 h, 10 m)
 - + Max current speed: 0.7 m/s
- <u>Swell present</u> (200 400 m wave length)
 - Up to 0.1 m incoming wave height operation possible, limited to 8 m/s wind speed in ballast (1-2 m local max short wave height)
 - Higher swell (rare event) no operation

Summary

- Reflection of waves on the old quay front result in higher wave heights, higher wave loads, and higher response
- Mooring lines and hook capacity are not limiting factors
 - Mooring lines of 71 t MBL are strong lines for a medium tanker
- Under effect of swell, fender compressions limit the operation

Possile outcomes

- Assess effect of having more flexible fenders
 - Double collapsible zones
- Monitoring of swell
 - Difficult to measure
 - Forecasts from Met office

Port planning – pier & jetty design

Mooring plan Dynamic analysis

