CoMEM

numerical modelling of elastic fluid-structure interaction for aquaculture applications

Master student : Sungsoo Lim (Co-)Supervisors : Tobias Martin, Dr. Arun Kamath, Prof. Hans Bihs

29 April 2019

Master Project Presentation, The 4th Coastal Engineering Day 2019

Concern

- Open water environment
 - Higher force and larger motion response
 - Non-linear wave-structure interaction

Structural damage

- Cooke aquaculture, Nova Scotia, Canada (2018)
 - Winter storm damage
 - Fish escapement

https://responsibleaquaculture.wordpress.com

State-of-the-art

- Xu et al. (2017)
 - Physical model test and finite element (FE) analysis for collar only
- Kristiansen and Faltinsen (2015)
 - Rigid body equation with nonlinear hydrodynamic forcing
 - Significant load increase in steeper waves

Work flow

- Computational Fluid Dynamics
- Fluid structure interaction

Why develop a new code?

- To extend higher order scheme
- Same amount of validating work
- Less unknown uncertainties

Governing equation – Structure model

 $[M]{\ddot{u}(t)} + [K]{u(t)} = {F(t)}$

Where, u: Displacement vector, F: Force vector [M]: Mass matrix, [K]: Stiffness matrix

 ${u^e}$: 12 x 1 vector

Time integration - Newmark method

- Popular in fluid-Structure interaction
- 2nd order scheme

K. J. Bathe (1982)

$$\begin{split} \dot{U}_{t+\Delta t} &= \dot{U}_t + \left[\delta \ddot{U}_{t+\Delta t} + (1-\delta) \ddot{U}_t\right] \Delta t \\ U_{t+\Delta t} &= U_t + \dot{U}_t \Delta t + \left[\alpha \ddot{U}_{t+\Delta t} + (\frac{1}{2} - \alpha) \ddot{U}_t\right] \Delta t^2 \\ \end{split}$$
Where, $\delta &= \frac{1}{2}$, $\alpha &= \frac{1}{4}$

Validation Case – Steel cantilever

- Own FE code vs. ANSYS
- 2D, 3D Beam
- Static, Transient analysis
- Point, distributed load

Next step - Coupling

- Convergence check in displacement
- Data Transfer
- Interpolation

Next step - Coupling

- Convergence check in displacement
- Data Transfer
- Interpolation

Back-up slide : Validation (1/2) – Amplitude error

Maximum Amplitude error compared to ANSYS results

Back-up slide : Validation (2/2) – Phase error

Average phase error compared to ANSYS results

Back-up slide : Governing equation – Structure model

 $[\mathbf{M}]\{\ddot{u}(t)\}+[\mathbf{K}]\{u(t)\}=\{F(t)\}$

 $[K^e], [M^e] : 12 \ge 12 \text{ matrix}, [K], [M] : N \ge N \text{ matrix}$ N : the degree of freedom = (# of element+1) \text{x1} e.g. 9 elements, 120 dofs

Back up slide : Validation – Static, Distributed load

Back up slide: Convergence, 2D Transient, q=1kN/m

1000

Max. error (|Newmark - ANSYS|) / Ref. value

Max. Error in % (Ref. displacement = 5.3E-03 (m))

The number of time step in one second (n)

# of timestep	1,00E+02	1,00E+03	1,00E+04	1,00E+05	1,00E+06	1,00E+07
Nele \ dt	1,00E-02	1,00E-03	1,00E-04	1,00E-05	1,00E-06	1,00E-07
5	11630 %	181 %	94 %	98 %	98 %	98 %
10	20858 %	955 %	7 %	83 %	85 %	85 %
20	22121 %	4938 %	140 %	25 %	32 %	32 %
40	22200 %	14234 %	264 %	11 %	7 %	7 %
60	22155 %	17462 %	383 %	30 %	2 %	3 %
80	22128 %	18866 %	506 %	42 %	1 %	
100	22057 %	19636 %	589 %	53 %	1 %	
150	21992 %	20574 %	915 %	75 %	2 %	

3-D Coordination, Conversion local to global

 $R_Z R_Y R_X$

$$= \begin{pmatrix} \cos C & -\sin C & 0\\ \sin C & \cos C & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B\\ 0 & 1 & 0\\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos A & -\sin A\\ 0 & \sin A & \cos A \end{pmatrix}$$
$$= \begin{pmatrix} \cos C \cos B & -\sin C & \cos C \sin B\\ \sin C \cos B & \cos C & \sin C \sin B\\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos A & -\sin A\\ 0 & \sin A & \cos A \end{pmatrix}$$
$$= \begin{pmatrix} \cos C \cos B & -\sin C \cos A + \cos C \sin B \sin A & \sin C \sin A + \cos C \sin B \cos A\\ \sin C \cos B & \cos C \cos A + \sin C \sin B \sin A & -\cos C \sin B \cos A\\ -\sin B & \cos C \cos A + \sin C \sin B \sin A & -\cos C \sin B \cos A\\ -\sin B & \cos B \sin A & \cos B \cos A \end{pmatrix}$$

3-D "M" Matrix for an element

3-D "K" Matrix for an element

Since, GAL² >> EI